Large language models (LLMs) have demonstrated impressive capabilities in natural language understanding and generation, but the quality bar for medical and clinical applications is high. Today, attempts to assess models' clinical knowledge typically rely on automated evaluations on limited benchmarks. There is no standard to evaluate model predictions and reasoning across a breadth of tasks. To address this, we present MultiMedQA, a benchmark combining six existing open question answering datasets spanning professional medical exams, research, and consumer queries; and HealthSearchQA, a new free-response dataset of medical questions searched online. We propose a framework for human evaluation of model answers along multiple axes including factuality, precision, possible harm, and bias. In addition, we evaluate PaLM (a 540-billion parameter LLM) and its instruction-tuned variant, Flan-PaLM, on MultiMedQA. Using a combination of prompting strategies, Flan-PaLM achieves state-of-the-art accuracy on every MultiMedQA multiple-choice dataset (MedQA, MedMCQA, PubMedQA, MMLU clinical topics), including 67.6% accuracy on MedQA (US Medical License Exam questions), surpassing prior state-of-the-art by over 17%. However, human evaluation reveals key gaps in Flan-PaLM responses. To resolve this we introduce instruction prompt tuning, a parameter-efficient approach for aligning LLMs to new domains using a few exemplars. The resulting model, Med-PaLM, performs encouragingly, but remains inferior to clinicians. We show that comprehension, recall of knowledge, and medical reasoning improve with model scale and instruction prompt tuning, suggesting the potential utility of LLMs in medicine. Our human evaluations reveal important limitations of today's models, reinforcing the importance of both evaluation frameworks and method development in creating safe, helpful LLM models for clinical applications.
translated by 谷歌翻译
Inference from large autoregressive models like Transformers is slow - decoding K tokens takes K serial runs of the model. In this work we introduce speculative decoding - an algorithm to sample from autoregressive models faster without any changes to the outputs, by computing several tokens in parallel. At the heart of our approach lie the observations that (1) hard language-modeling tasks often include easier subtasks that can be approximated well by more efficient models, and (2) using speculative execution and a novel sampling method, we can make exact decoding from the large models faster, by running them in parallel on the outputs of the approximation models, potentially generating several tokens concurrently, and without changing the distribution. Our method supports existing off-the-shelf models without retraining or architecture changes. We demonstrate it on T5-XXL and show a 2X-3X acceleration compared to the standard T5X implementation, with identical outputs.
translated by 谷歌翻译
最近显示外部眼睛照片显示出糖尿病性视网膜疾病和HBA1C升高的迹象。在本文中,我们评估外部眼睛照片是否包含有关其他系统性医疗状况的信息。我们开发了一个深度学习系统(DLS),该系统将外部眼睛的照片作为输入,并预测多个全身参数,例如与肝脏有关的参数(白蛋白,AST);肾脏(EGFR使用无种族的2021 CKD-EPI肌酐方程,尿液ACR);骨与矿物质(钙);甲状腺(TSH);和血数(HGB,WBC,血小板)。开发利用了49,015例糖尿病患者的151,237张图像,在加利福尼亚州洛杉矶县的11个地点接受糖尿病眼镜筛查。评估重点是9个预先指定的全身参数,并利用了3个验证集(a,b,c),涵盖了28,869名患有和没有糖尿病的患者,在加利福尼亚州洛杉矶县和大亚特兰大地区的3个独立地点进行了眼睛筛查。我们将结合了可用临床人口统计学变量的基线模型(例如年龄,性别,种族/种族,糖尿病年)进行了比较。相对于基线,DLS在检测AST> 36,钙<8.6,egfr <60,HGB <11,血小板<150,ACR> = 300和WBC <4时,在检测AST> 36,钙<8.6,Egfr <60,HGB <60,HGB <60,calcium <8.6,Egfr <60,calcium <8.6和wbc <4时,达到了统计学上的显着性能,并且类似于开发集的人口),其中DLS的AUC超过基线的AUC,增长了5.2-19.4%。在验证集B和C方面,与开发集相比,患者人群的差异很大,DLS的表现优于ACR> = 300的基线,而HGB <11升至7.3-13.2%。我们的发现提供了进一步的证据,表明外部眼睛照片包含跨越多器官系统的全身健康生物标志物。需要进一步的工作来研究这些生物标志物是否以及如何转化为临床影响。
translated by 谷歌翻译
谷歌的运营洪水预测系统是制定的,为机构和公众提供准确的实时洪水警告,重点是河流洪水在大型潮流的河流中。它在2018年开始运作,自从地理位置扩展以来。该预测系统由四个子系统组成:数据验证,阶段预测,淹没建模和警报分配。机器学习用于两个子系统。阶段预测采用长短期内存(LSTM)网络和线性模型进行建模。使用阈值和歧管模型计算洪水淹没,前者计算淹没程度,后者计算淹没程度和深度。本文首次提供的歧管模型提供了一种机器学习替代洪水淹没的液压建模。在评估历史数据时,所有型号都可以实现可操作使用的足够高的度量指标。 LSTM表现出比线性模型更高的技能,而阈值和歧管模型达到了类似的性能度量,以便在淹没程度上进行建模。在2021年的季风季节期间,洪水预警系统在印度和孟加拉国运营,覆盖河流的洪水区,总面积287,000平方公里,拥有350多万人。超过100米的洪水警报被发送给受影响的人口,相关当局以及紧急组织。系统上的当前和未来的工作包括将覆盖范围扩展到额外的洪水易发位置,以及提高建模能力和准确性。
translated by 谷歌翻译
背景:洪水是世界上最常见的自然灾害,影响数亿岁的生活。因此,洪水预测是一项重要的重要努力,通常使用物理水流模拟实现,依赖于准确的地形升降映射。然而,这种基于求解部分微分方程的这种模拟是在大规模上计算上的禁止。这种可扩展性问题通常使用高程地图的粗网格表示,尽管这种表示可能扭曲了至关重要的地形细节,导致模拟中的显着不准确。贡献:我们训练一个深度神经网络,以执行地形地图的物理信息信息:我们优化地形地图的粗网格表示,以便洪水预测将匹配细网解决方案。对于成功的学习过程,我们专门为此任务配置数据集。我们证明,通过这种方法,可以实现计算成本的显着降低,同时保持准确的解决方案。参考实施伴随着该文件以及数据集再现的文档和代码。
translated by 谷歌翻译
This work profoundly analyzes discrete self-supervised speech representations through the eyes of Generative Spoken Language Modeling (GSLM). Following the findings of such an analysis, we propose practical improvements to the discrete unit for the GSLM. First, we start comprehending these units by analyzing them in three axes: interpretation, visualization, and resynthesis. Our analysis finds a high correlation between the speech units to phonemes and phoneme families, while their correlation with speaker or gender is weaker. Additionally, we found redundancies in the extracted units and claim that one reason may be the units' context. Following this analysis, we propose a new, unsupervised metric to measure unit redundancies. Finally, we use this metric to develop new methods that improve the robustness of units clustering and show significant improvement considering zero-resource speech metrics such as ABX. Code and analysis tools are available under the following link.
translated by 谷歌翻译
State-of-the-art object detectors are treated as black boxes due to their highly non-linear internal computations. Even with unprecedented advancements in detector performance, the inability to explain how their outputs are generated limits their use in safety-critical applications. Previous work fails to produce explanations for both bounding box and classification decisions, and generally make individual explanations for various detectors. In this paper, we propose an open-source Detector Explanation Toolkit (DExT) which implements the proposed approach to generate a holistic explanation for all detector decisions using certain gradient-based explanation methods. We suggests various multi-object visualization methods to merge the explanations of multiple objects detected in an image as well as the corresponding detections in a single image. The quantitative evaluation show that the Single Shot MultiBox Detector (SSD) is more faithfully explained compared to other detectors regardless of the explanation methods. Both quantitative and human-centric evaluations identify that SmoothGrad with Guided Backpropagation (GBP) provides more trustworthy explanations among selected methods across all detectors. We expect that DExT will motivate practitioners to evaluate object detectors from the interpretability perspective by explaining both bounding box and classification decisions.
translated by 谷歌翻译
Prior works on improving speech quality with visual input typically study each type of auditory distortion separately (e.g., separation, inpainting, video-to-speech) and present tailored algorithms. This paper proposes to unify these subjects and study Generalized Speech Enhancement, where the goal is not to reconstruct the exact reference clean signal, but to focus on improving certain aspects of speech. In particular, this paper concerns intelligibility, quality, and video synchronization. We cast the problem as audio-visual speech resynthesis, which is composed of two steps: pseudo audio-visual speech recognition (P-AVSR) and pseudo text-to-speech synthesis (P-TTS). P-AVSR and P-TTS are connected by discrete units derived from a self-supervised speech model. Moreover, we utilize self-supervised audio-visual speech model to initialize P-AVSR. The proposed model is coined ReVISE. ReVISE is the first high-quality model for in-the-wild video-to-speech synthesis and achieves superior performance on all LRS3 audio-visual enhancement tasks with a single model. To demonstrates its applicability in the real world, ReVISE is also evaluated on EasyCom, an audio-visual benchmark collected under challenging acoustic conditions with only 1.6 hours of training data. Similarly, ReVISE greatly suppresses noise and improves quality. Project page: https://wnhsu.github.io/ReVISE.
translated by 谷歌翻译
Voice Conversion (VC) is the task of making a spoken utterance by one speaker sound as if uttered by a different speaker, while keeping other aspects like content unchanged. Current VC methods, focus primarily on spectral features like timbre, while ignoring the unique speaking style of people which often impacts prosody. In this study, we introduce a method for converting not only the timbre, but also prosodic information (i.e., rhythm and pitch changes) to those of the target speaker. The proposed approach is based on a pretrained, self-supervised, model for encoding speech to discrete units, which make it simple, effective, and easy to optimise. We consider the many-to-many setting with no paired data. We introduce a suite of quantitative and qualitative evaluation metrics for this setup, and empirically demonstrate the proposed approach is significantly superior to the evaluated baselines. Code and samples can be found under https://pages.cs.huji.ac.il/adiyoss-lab/dissc/ .
translated by 谷歌翻译
The mediocre performance of conventional federated learning (FL) over heterogeneous data has been facilitating personalized FL solutions, where, unlike conventional FL which trains a single global consensus model, different models are allowed for different clients. However, in most existing personalized FL algorithms, the collaborative knowledge across the federation was only implicitly passed to the clients in ways such as model aggregation or regularization. We observed that this implicit knowledge transfer fails to maximize the potential value of each client's empirical risk toward other clients. Based on our observation, in this work, we propose Personalized Global Federated Learning (PGFed), a novel personalized FL framework that enables each client to personalize its own global objective by explicitly and adaptively aggregating the empirical risks of itself and other clients. To avoid massive ($O(N^2)$) communication overhead and potential privacy leakage, each client's risk is estimated through a first-order approximation for other clients' adaptive risk aggregation. On top of PGFed, we develop a momentum upgrade, dubbed PGFedMo, to more efficiently utilize clients' empirical risks. Our extensive experiments under different federated settings with benchmark datasets show consistent improvements of PGFed over the compared state-of-the-art alternatives.
translated by 谷歌翻译